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Abstract— It is essential for autonomous robots to be socially
compliant while navigating in human-populated environments.
Machine Learning and, especially, Deep Reinforcement Learn-
ing have recently gained considerable traction in the field of
Social Navigation. This can be partially attributed to the result-
ing policies not being bound by human limitations in terms of
code complexity or the number of variables that are handled.
Unfortunately, the lack of safety guarantees and the large data
requirements by DRL algorithms make learning in the real
world unfeasible. To bridge this gap, simulation environments
are frequently used. We propose SocNavGym, an advanced
simulation environment for social navigation that can generate
a wide variety of social navigation scenarios and facilitates
the development of intelligent social agents. SocNavGym is
lightweight, fast, easy to use, and can be effortlessly configured
to generate different types of social navigation scenarios. It can
also be configured to work with different hand-crafted and data-
driven social reward signals and to yield a variety of evaluation
metrics to benchmark agents’ performance. Further, we also
provide a case study where a Dueling-DQN agent is trained to
learn social-navigation policies using SocNavGym. The results
provide evidence that SocNavGym can be used to train an agent
from scratch to navigate in simple as well as complex social
scenarios. Our experiments also show that the agents trained
using the data-driven reward function display more advanced
social compliance in comparison to the heuristic-based reward
function.

I. INTRODUCTION

Social compliance is key to deploying robots, not only
for pedestrians’ comfort but also to enhance efficiency. The
sheer amount of research in the field is evidence of its
importance [1]. Until recently, the vast majority of Social
Navigation (SN) algorithms were hand-crafted and coded
by humans. One of the limitations of this approach is
its poor scalability in terms of the number of variables
considered, which is partially because the equations involved
become complex to understand, implement and perhaps most
importantly, debug. Other factors that make incorporating
other variables challenging include the lack of a principled
theory of pedestrians’ comfort, and the fact that the state
of the world is only partially observable (e.g., pedestrians’
hidden goals, intents, mood). Because of these limitations,
the community is experiencing a strong trend toward data-
driven methods that can account for more variables. The most
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common SN approach making use of learning involves using
hand-crafted algorithms in conjunction with learning-based
human trajectory predictors. Examples of these works are
[2], [3], [4], [5], [6], [7], where actions are planned using
search trees and other heuristic-based algorithms relying
on estimated human states [8]. Other learning-based works
include social compliance estimators, such as the Social
Navigation Graph Neural Network (SNGNN) [9]. A third
family of promising social navigation algorithms that has
gained recent popularity, are those using Deep Reinforcement
Learning (DRL) and Learning from Demonstrations (LfD)
[10], [11], [12], [13], [14], [15].

DRL systems have three especially critical components:
1) a DRL algorithm, 2) a neural architecture, and 3) an envi-
ronment providing observations and rewards. While research
in DRL fundamentally focuses on the first two aspects,
a limitation in the current literature is that none of the
reward functions used in the existing gym environments has
been designed to reflect overall users’ opinions about the
contextual social compliance of the agent. The ones in use
are more suitable to solve multi-agent collision avoidance
rather than social navigation, which is a different, relatively
easier problem. To the best of our knowledge, the reward
functions used in the DRL-based SN literature are all piece-
wise defined functions where the piece considering the social
compliance of the agent is a simple linear equation or
a similar profile function that only consider pedestrians’
positions. We strongly argue that, to learn socially-compliant
policies via DRL, the reward function should be carefully
designed to consider users’ opinions.

Inverse Reinforcement Learning (IRL) has shown promis-
ing results in social navigation [16], [17], [18]. If trained
with adequate data, a learned reward function can help tackle
these issues, as a DRL architecture could be trained to
optimise for it, enabling socially-compliant policy learning.
The resulting behaviour could theoretically be as principled
and effective as such a learned reward. Our hypothesis in
this vein is that using a learned model for comfort as a
reward function will lead to better social compliance than
other simplistic or hand-crafted rewards. Therefore, our gym
environment -SocNavGym- integrates SNGNN-v2 [19] in its
reward function, the only model that we have found in the
literature providing step-wise social compliance scores.

The desiderata established for SocNavGym’s design is as
follows:

1) be lightweight, fast and easy to use and configure, with
as few software dependencies as possible;

2) simulate a rich variety of realistic social scenarios so
that agents can be used in as many real-life settings as
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possible;
3) be easy to modify and extend;
4) provide a high-quality social reward to ensure that

near-optimal policies meet real pedestrians’ expecta-
tions; and

5) provide established evaluation metrics to benchmark
agents’ performance.

To the best of our knowledge, no existing navigation gym
satisfies all the aforementioned requirements (see Section II
for details).

SocNavGym is a 2D simulation environment built by
extending the OpenAI’s MultiAgent Particle Environment
(MPE) [20]. We take inspiration from the existing work
in the literature and incorporate some of the most rele-
vant features into SocNavGym. Examples of additional fea-
tures include static obstacle-like entities, static and dynamic
agent formations, and interactions between different entities
(e.g., human-looking-at-laptop, human-talking-with-human).
We also integrate SNGNN-v2 [19], a data-driven reward
function trained on a users’ opinions dataset [21], [22].
Further, we train a DuelingDQN [23] model to show that our
simulation environment can be used to train DRL algorithms
in a variety of rich social situations.

II. RELATED WORK

Many high-fidelity simulators have been developed to
collect data and train models for robotic applications e.g.,
CARLA [24], iGibson [25]. Crowd simulation platforms
like Nomad [26] and Menge [27] are designed to model
individuals and crowds. On the contrary, SEAN [28] and
SocialGym [29] are designed to train and evaluate social
agents but their reliance on Unity [30] and Robot Operating
System (ROS), might not be ideal for many DRL researchers
due to additional complexity and computational resources
required. Although these provide good physics simulations,
they require a considerable amount of computing power
that does not seem justifiable for this specific application.
Also, to focus on decision-making for social navigation, one
can abstract away the perception task that further weakens
the need for high-fidelity simulators. SocNavGym and other
state-of-the-art SN gyms (e.g., SARL [10], DSRNN [11]),
use low-fidelity simulators but, unlike SocNavGym, oth-
ers fail to recreate realistic complex social settings. In
SARL [10], scenarios are composed of humans forming a
circle moving in the diametrically opposite direction using
ORCA policy in an otherwise empty space. In DSRNN [11],
static and dynamic groups are also present, but they still
greatly differ from typical human-populated environments.
SocialGym [29] goes a step further to introduce room-
like scenarios with corridors and more realistic pedestrian
movement. However, its dependence on ROS [31] creates
additional overhead, and its setup and installation process is
not as easy as desired. Further, bringing about any change
in the environment requires the user to know the ROS
framework which is not ideal. Additionally, none of these
environments provides a principled social reward function
that factors in human opinion, which makes agents trained

with them, treat humans as dynamic obstacles rather than
social beings.

Another gap found in simulation environments is the lack
of support for common interactions, such as those among
humans and with other inanimate entities. Such interactions
are important while training agents for realistic scenarios
since the level of disturbance that an agent can cause depends
on these interactions. For example, an agent could cause
considerable disturbance to two people talking (human-
human interaction) even if the agent does not enter the
personal space of the individuals involved. These interactions
should be taken into consideration, regardless of them being
directly observable by the agents or expected to be inferred
(SocNavGym supports both options).

With the exception of SocialGym [29] and SEAN [28],
none of the reviewed SN gyms provide sufficient evalua-
tion metrics (e.g., time taken to reach the goal, minimum
distance to human, discomfort level) to benchmark social
performance. Even though these gyms provide a subset of the
evaluation metrics, they do not provide any metric or reward
function accounting for efficiency and human comfort.

III. GYM DESIGN DECISIONS AND FEATURES

SocNavGym follows the standard OpenAI Gym API
convention. Installation and setup are also straightforward,
either from source or via pip. All adjustable parameters are
described in the project’s documentation and can be modified
via configuration files without accessing the codebase. The
project includes several sample configuration files to facil-
itate the use of the proposed tool. Moreover, it provides a
DuelingDQN [23] baseline for reference, which is described
in Sec. IV. We put forward a new open-source1 gym that
meets the desiderata described in Sec. II. In particular,
SocNavGym provides the following features:

1) lightweight randomised scenario generation and simu-
lation,

2) support for static objects, corridors and walls to bound
rooms of different shapes and sizes (Fig. 1.i-j)),

3) creation and dispersion of group formations and in-
teractions (e.g., human-looking-at-laptop, group of hu-
mans) (Fig. 1 (a & e), (b & f), (c & g), (d & h)),

4) support for holonomic and non-holonomic robots that
can be controlled with discrete or continuous action
spaces,

5) integration of a learned reward function combining
social and functional aspects (SNGNN-v2 [19]), sim-
ple heuristic-based reward functions used in other
works [11], and an API to create custom reward
functions,

6) it provides a variety of additional evaluation metrics
to benchmark agents’ performance (in particular the
metrics suggested in the guidelines paper [32]),

7) it includes gaze as a human property that can be added
to the observation space and allows to simulate limited
Fields of View (FoV) (Fig. 1 (l)),

1https://github.com/gnns4hri/SocNavGym
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8) it allows limiting the FoV and sensor range of the agent
(Fig. 1 (k)),

9) ORCA [33] and social force model [34] policies sup-
port for humans, with the option to consider or ignore
robots,

10) optional and configurable noise for agents’ sensory
input,

11) manual control of the agent to collect LfD datasets.

A. Description of Gym features

SocNavGym is not dependent on a high-fidelity physics
engine or any software framework to avoid additional over-
heads and delays while running simulations (feature 1).
Previous works like SARL [10] and DSRNN [11] that use
the likes of the proposed simulator only work with human
entities in the environment. In our gym environment, the
generated social scenarios can have different shapes and sizes
across different episodic runs along with inanimate entities
like plant, table, laptop and animate entities like human
crowds of variable size (feature 2). In realistic social settings,
human crowds and human-object interactions can form and
break at any point in time, and our gym environment supports
such dynamics (feature 3). This dynamic nature of interaction
formation and dispersion is necessary to learn meaningful
social context since the level of disturbance changes when
an interaction undergoes a transition, that is, formation or
dispersion.

Regarding the steering system of the robotic agents, previ-
ous works only support holonomic agents whose learnt pol-
icy cannot be directly transferred to non-holonomic agents.
Thus we allow users to choose the agent they want to learn
policies for (feature 4).

The reward functions used in previous works are arguably
designed for collision avoidance rather than discomfort
avoidance. To learn policies that truly account for social
norms, we incorporated a discomfort estimator into our
reward function that penalises agents for causing disturbance
based on the context of the environment (feature 5). We
further show a use case where we train a DuelingDQN
agent with the proposed reward function and one of the
commonly used in the literature and benchmark its behaviour
using the evaluation metrics proposed in the guidelines
paper [32], see Table II. The gaze of the human can be a
good source of information to make navigation decisions.
Therefore, for each human observed, SocNavGym provides
a flag specifying whether the robotic agent is in their field of
view (feature 7). The gym also enables users to mimic the
constraints of their physical hardware on robots that might
have limited field of view and range (feature 8). Humans
in the gym can be controlled via ORCA or SFM policies
(feature 9) and the users can choose whether the human
behaviour should factor in the agent while calculating its
policy.

To collect offline datasets, SocNavGym provides a sample
script that allows the users to manually manipulate the agent
in the room to collect (state, action, next state, reward) tuples
(feature 11).

The observations take the form of dictionaries containing
a key per entity type, the corresponding value being a
list of such types of entities, namely ”goal”, ”humans”,
”objects”, ”walls” and ”relationships”. All entities have basic
properties including an identifier, 2D position coordinates,
orientation, the radius of their bounding sphere, and their
relative velocities -linear and angular. The observations re-
turned by the environment can contain information about all
the entities in the environment (fully observable) or only a
subset of observable entities. This is configured by adjusting
the range and field of view width of the robot, based on users’
discretion (feature 8. Similarly, SocNavGym can be set up
so that the observations are relative to the agent or a global
frame of reference. In addition, the sensory information
of specific entities can be corrupted with Gaussian noise
by setting the distribution’s parameters (feature 10). These
variations of the observations can be configured via gym
wrappers. If SocNavGym is configured to provide it, the
”relationships” section of the observation space accounts for
relational information (e.g., humans talking, a human looking
towards objects and human gaze, feature 7).

B. Evaluation metrics

SocNavGym provides events and the evaluation metrics
suggested in [32] via the info variable returned with each
step of an episode (see Table I). They are designed to
better understand agents’ performance while training (fea-
ture 6). Along with these events and evaluation metrics,
global metrics, corresponding to the execution of several
episodes, can be obtained from the ones provided by the
info variable. It also returns an adjacency matrix to identify
the interacting entities in the environment at every instance
of the simulation. These global metrics are accessible via
helper functions to evaluate social agents in multiple runs.

C. Human trajectory generation

Simulated pedestrian trajectories can be generated with
ORCA or a social force model. To get variable behaviours for
each human, SocNavGym can be configured to use one of the
two or to be chosen at random for every spawned pedestrian.
The user can also choose for the robot to be ignored when
calculating the simulated humans’ actions. On spawning, the
dynamic humans and crowds are given a goal location and,
on reaching the goal, if the episode is not terminated, another
goal location is sampled. SocNavGym can also be configured
to create and dissolve groups, as well as human-human and
human-object interactions. For crowd dispersion, each human
or sub-group gets a different goal that they have to traverse
or remain in place (static). Further, the user can change the
FoV of the pedestrians to restrict its policy to only consider
entities in their FoV.

D. Reward functions

SocNavGym allows making use of the reward function
used by popular DRL-based SN approaches, (e.g., [35], [10]),
a piece-wise function that: a) gives a positive reward if the
robot reaches the goal; b) provides a linear penalty if it gets
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(a) Before Crowd Dispersal (b) Before Crowd
Formation

(c) Before Human-Laptop
Interaction Dispersal

(d) Before Human-Laptop
Interaction Formation

(e) After Crowd Dispersal (f) After Crowd Formation (g) After Human-Laptop
Interaction Dispersal

(h) After Human-Laptop
Interaction Formation

(i) Corridors in squared
area

(j) L-shaped area (k) Robot Limited Field of
View and Sensor Range

(l) Human Gaze

(m) Entities’ Labels

Fig. 1: Before (a-d) and after (e-h) scenario of dynamic formation and dispersal of a crowd and human-laptop interactions
in the environment. Fig.i and Fig.j are square and L-shaped areas. Fig.k displays the sensor ranges of the robot and Fig.l
shows the human gaze.

too close to a human; and c) rewards reducing the distance
to the goal. In mathematical notation:

r(st, at) =


−1, if dtmin ≤ ragent + rentity

(dtmin − δdisc) · α · dt, if 0 < dtmin < δdisc

1.0, if dtgoal ≤ ρagent

(dt−1
goal − dtgoal) · β, otherwise

(1)

where r(st, at) is the reward that the agent gets when per-
forming action at in state st at time t, dtmin is the minimum
acceptable distance between the robot and the closest human
at time t, ragent and rentity are the radius of the agent and an
arbitrary entity in the environment respectively, δdisc (0.6m
by default) is the threshold discomfort distance between the
agent and the human, α is a discomfort scaling factor, dt is
the simulation timestep, ρagent is the goal radius, dtgoal is
the L2 distance to the goal position at time t, and β is a
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Metric Name Description
OUT OF MAP True if the agent is out of the map

COLLISION HUMAN & COLLISION OBJECT
& COLLISION WALL True if the agent has collided with a human OR object OR wall

COLLISION True if the agent has collided with any entity
SUCCESS True if the agent has reached the goal
TIMEOUT True if the episode has terminated due to max episode length

FAILURE TO PROGRESS The number of timesteps that the robot failed to reduce the distance to goal
STALLED TIME The number of timesteps that the robot’s velocity is 0

TIME TO REACH GOAL Number of time steps taken by the robot to reach its goal
STL Success weighted by time length
SPL Success weighted by path length

PATH LENGTH Total path length covered by the robot
V MIN & A MIN & JERK MIN Minimum velocity OR acceleration OR jerk that the robot has achieved
V AVG & A AVG & JERK AVG Average velocity OR acceleration OR jerk of the robot

V MAX & A MAX & JERK MAX Maximum velocity OR acceleration OR jerk that the robot has achieved
TIME TO COLLISION Minimum time to collision with a human at any point in time in the trajectory.

MINIMUM DISTANCE TO HUMAN Minimum distance to any human.
PERSONAL SPACE COMPLIANCE Percentage of steps that the robot is not within the personal space (0.45m) of any human.
MINIMUM OBSTACLE DISTANCE Minimum distance to any object.
AVERAGE OBSTACLE DISTANCE Average distance to any object.

DISCOMFORT DSRNN The discomfort reward according to the DSRNN reward function
distance reward difference in agent’s distance to goal in the previous and current time steps
sngnn reward The SNGNN reward that is SNGNN value− 1. ( DISCOMFORT SNGNN − 1)
alive reward Alive reward that the agent received (meant to be used as a penalty)

closest human dist Closest distance to a human
closest obstacle dist Closest distance to an obstacle

TABLE I: Metrics in info dictionary

(a) Snapshot of the current state of the
environment

(b) SNGNNv2-discomfort values for the
current state of the environment.

(c) DSRNN-discomfort values for the
current state of the environment

Fig. 2: Heatmaps of DSRNN-discomfort and SNGNNv2-discomfort for a social situation. Although the shape is similar
(circular), the profile of the data-driven reward function is clearly non-linear. For visualisation purposes, we divided the
room into an NxN grid (N=100) and placed the robot on each of these grid cells to obtain the discomfort values. We
produce these values with respect to humans and interactions only so that a clean heatmap is obtained.

(a) A robot moving towards stationary
pedestrians.

(b) Pedestrians moving towards an
stationary robot.

(c) Both the pedestrians and robot moving
towards each other.

Fig. 3: SNGNN-Discomfort when the agent (a) is moving towards the stationary entities, (b) is stationary and the entities
are moving towards the agent, and (c) the entities are moving towards each other. SNGNN-Discomfort considers the context
as well as the presence or absence of different relations while evaluating the scenario.
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 4: Snapshot of the simulation environments used in the experiments.

scaling factor for the L2 distance.
The second piece of the reward function is a potential

field around every entity in the room of radius δdisc within
which the agent is penalised as its proximity from the entity
decreases. This piece is the discomfort penalty that is used
as a feedback to learn social compliant behaviour.

We argue that this reward function does not accurately
account for human discomfort because it is agnostic to the
context of the social situation. For instance, the threshold
dtmin is chosen arbitrarily and there are many variables
that the function does not consider, such as velocities,
orientations, or interactions. Another instance would be the
agent getting a similar penalty when a human is approached
from the back and front when, as studies have pointed
out [36], the disturbance caused in both situations varies.
Thus, we propose using a reward function that accounts
for users’ opinions based on the overall social context. As
aforementioned, given the difficulty to model complex social
preferences with hand-crafted equations, we propose the re-
ward function in Eq. 2, which replaces the above discomfort
factor with an SNGNN-v2 [19] based function. Leveraging
a learned discomfort metric from human feedback arguably
leads to better handling of social context:

r(st, at) =


−1, if dtmin ≤ ragent + rentity

1, if dtgoal ≤ ρagent

(dt−1
goal − dtgoal) · β + P (st), otherwise

(2)

where P (st) is the SNGNN discomfort penalty, defined as:

P (st) = (SNGNN(st)− 1) · δ (3)

SNGNN(·) being the function implemented by the SNGNN
model and δ being a scaling factor. SNGNN scores range
from 1 (no disturbance) to 0 (extreme disturbance). There-
fore, to use it as a penalty, 1 is subtracted from its output.

SNGNN-v2 [19] is trained to consider social phenomena.
An example shown in Fig. 3 is how it accounts for the differ-
ence in the estimated discomfort in different situations given
the robot-human distance. Similarly, Fig. 2 shows heatmaps
of the discomfort values used in the two reward functions.
DSRNN discomfort values are visibly homogeneous irre-
spective of the orientation of the human or the presence
or absence of a crowd or interactions. This illustrates that

the DSRNN’s reward function, although it is useful to study
collision-free navigation, is arguably not the best to tackle
the problem of Social Navigation.

IV. USE CASES

We integrate the Dueling-DQN agent with our environ-
ment to compare the performance of SNGNN based reward
function with the one popularly used in the literature that
we term DSRNN reward function. The agent neural network
consists of 5 linear layers with 512, 256, 128, and 64 as
the hidden units using LeakyRelu as the activation function.
We used the Adam optimiser with a fixed learning rate
of 0.001 and trained the agent separately with the two
reward functions described above. The training lasted for
50K episodes with a maximum episode length of 200 discrete
timesteps.

A. Social scenarios

The agent’s observation space comprises of the position,
orientation, and velocity of other entities in the agent’s
frame of reference. In each experiment, the position and
orientation of all the entities’ are initialised randomly, and
the hyperparameters for the human’s motion using ORCA or
SFM are sampled from a Gaussian distribution for variable
behaviour.

We train a Dueling DQN agent on three social scenarios
that have increasing difficulty. All experiments were carried
out with a non-holonomic agent. The following environment
settings have been used to train the DRL agent:

• Experiment 1: In this experiment, we consider a 10m x
10m square room with 1 plant and 1 dynamic human
(Fig 4.(a)).

• Experiment 2: A 10m x 10m square room with 1 table,
1 laptop placed randomly on the table, a static crowd
of 3 humans, a dynamic crowd of 3 humans and one
human that can dynamically form or break away an
ongoing interaction with the laptop on the table during
the episode (Fig 4.(b)).

• Experiment 3: A 10m x 10m square room with 1
table, 1 laptop placed randomly on the table, a static
crowd of 3 humans, a dynamic crowd of 3 humans,
and a dynamic human that can interact with the laptop.
Humans interacting with the laptop and part of dynamic
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Exp 1
DSRNN

Exp 1
SNGNN

Exp 2
DSRNN

Exp 2
SNGNN

Exp 3
DSRNN

Exp 3
SNGNN

Discomfort SNGNN -5.495 -2.377 -17.786 -4.639 -22.376 -5.429
Discomfort DSRNN -0.2 -0.143 -0.481 -0.403 -1 -0.341
Personal Space Compliance 0.979 0.996 0.997 0.973 0.998 0.989
Closest Human Distance 2.556 2.528 1.456 1.92 1.376 1.736
Human Collision Rate 0.02 0.02 0 0.06 0.01 0.01
Wall Collision Rate 0.02 0.01 0 0.01 0.04 0
Object Collision Rate 0.07 0.04 0.02 0.06 0.12 0
Collision Rate 0.09 0.06 0.02 0.12 0.13 0.01
Minimum time to collision 186.511 191.195 172.24 177.492 174.56 184.601
Closest Obstacle Distance 1.039 1.298 0.806 0.845 0.751 0.884
Average Obstacle Distance 4.651 4.686 4.449 4.394 4.458 4.426
Timeout 0.1 0.26 0.5 0.08 0.53 0.04
Stalled Time 18.61 23.28 32.25 13.72 81.19 0.37
Time to Reach Goal 90.55 97.86 139.15 79.77 162.47 67.14
Failure to progress 5.42 12.27 29.06 2.05 6.55 7.84
Path Length 5.558 6.451 10.44 4.575 6.288 6.483
STL 0.644 0.607 0.388 0.746 0.204 0.888
SPL 0.678 0.624 0.393 0.75 0.27 0.871
Minimum velocity 0.03 0.042 0.03 0.053 0.006 0.082
Average velocity 0.08 0.084 0.082 0.09 0.052 0.098
Maximum velocity 0.1 0.1 0.1 0.1 0.1 0.1
Minimum acceleration 0.002 0.0 0 0.002 0 0
Average acceleration 0.023 0.031 0.064 0.011 0.018 0.012
Maximum acceleration 0.139 0.139 0.17 0.115 0.126 0.135
Minimum jerk 0.002 0.001 0 0.004 0.001 0
Average jerk 0.041 0.062 0.126 0.019 0.033 0.023
Maximum jerk 0.214 0.218 0.303 0.141 0.224 0.183

TABLE II: Performance of DuelingDQN when trained with the two reward functions. All the above metrics are averaged
over 100 test episodes.

crowds are allowed to form and break their object or
crowd interaction midst the episode ( Fig 4.(c))

More complex scenarios can be generated by modifying
the variables in the configuration files.

B. Results

The Dueling-DQN agent was trained using the two reward
functions of Eq. 1 and Eq. 2 in the aforementioned social
scenarios. Table II shows the performance of the trained
agent across different evaluation metrics. Specifically, two
different groups of metrics are considered: social com-
pliance metrics and navigation metrics. Social compliance
encompasses metrics such as SNGNN-discomfort (Eq. 2),
DSRNN-discomfort (Eq. 1), Personal Space Compliance
(PSC), closest distance to human and human collision rate.
The remainder composes the navigation metrics. Minimum,
average, and maximum velocity, acceleration, and jerk give
additional information about the motion primitives of the
agent. This second group is included to help users understand
the agent’s performance on traversing the goal location. As
observed in Table II, according to the social metrics, the
agent trained with the SNGNN-v2 reward function achieves
higher social compliance when compared to the agent using
the DSRNN reward. In addition, the performance of the
SNGNN agent is also significantly better than the DSRNN
agent in the navigation metrics in Experiments 2 & 3, which
have a more complex social situation. This indicates that
the agent can effectively learn to weigh the social context
together with collision avoidance by means of this new
discomfort penalty, which adds an additional benefit to the

use of our tool for the creation of new human-aware robot
navigation algorithms.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we provide the HRI community with an
easy-to-use social navigation environment capable to support
the training of social navigation agents in different user-
specified environment configurations that can vary in com-
plexity, along with a social reward function. The experiments
evidence that considering the social reward yields better
social performance with little or no damage to the Success
weighted by Time Length (STL). Although satisfactory,
there are some limitations of the current work that we are
working towards addressing in the near future. These include
explicitly retraining SNGNN-v2 on holonomic systems and
using more sophisticated navigation policies for humans.
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